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Introduction




Importance of Healthcare

 Quality of Life
* Life Expectancy

e Social and Economic Impact
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Role of Al in Healthcare

* Diagnosis and Treatment ¢ Personalized Medicine

* Drug Discovery * Operations and Logistics
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- The Next Big Thing




Explainable Al for Healthcare



What is Explainability?

* Explainability in the context of Al refers to the ability of a
model to provide understandable and interpretable

outputs or decisions.

Black Box Al Explainable Al (XAl) ;



Al vs. Explainable Al

Today Task
X « Why did you do that?
Machin Decision or * Why not something else?
Training Leaain'ine Learned Recommendation * Whendo you sqcceed?
Process * Whencan | trust you?
» How do | correct an error?
User
XAl Task
- + | understand why
New « | understand why not
Training Machine N Explainable | Explanation « 1 know when you succeed
Data Learning Model Interface * | know when you fail
Process * | know when to trust you
* | know why you erred




Why is Explainability Important in Healthcare?

* Transparency * Trust * Accountability

 Medical Ethics and Legal Compliance ¢ Reducing Impact of

Model Biasing
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Challenges in Explainability

* Trade-off between Performance and Explainability

e Complexity of Models

Y = 100*age + 10*income + 200 | | = L z;f i e,
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(3 parameters) (62.3 million parameters)
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Methods for Achieving Explainability

* Post-hoc Analysis
* Interpretable Models

 Visual Tools

Black box

Input
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Examples of Explainable Al in Healthcare

 (Case Study 1 - Post-hoc Analysis
 (Case Study 2 - Interpretable Models
 (Case Study 3 - Visual Tools
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Case Study 1 - Post-hoc Analysis

* Gradient-weighted Class Activation Mapping (Grad-CAM)
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Case Study 1 - Post-hoc Analysis (Cont’d)

* Local Explainability (e.g., LIME): Understanding a specific
decision made by the model.
* Global Explainability (e.g., SHAP): Understanding the entire

model and how it makes decisions.

Explainability
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Case Study 2 - Interpretable Models

e Sparsity for Explanation
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Case Study 2 - Interpretable Models (Cont’d)

e Attention Mechanisms for Explanation
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Case Study 3 - Visual Tools

 Region and Connectivity Visualization for Brain Network

18

Houliang Zhou et al, MICCAI’22



Future Directions




Future Trend in Healthcare

Harnessing Medical Data Variety and Other Technologies
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- Effect of on cultured -
fibroblasts release of
hydrolases and |nh|bmon of

Masked Language - Eﬁect of ("Ioroqdme on cultured ;
. Modeling . fibroblasts: release of lysosomal
— hydrolases and inhibition of their

She was treated with Magnesium

Premise Sulfate, Labetalol, Hydralazine and
bedrest as well as betamethasone.
Hypothesis | The patient is not pregnant.

Object - Visual Question

Answering

« Al: Extensive necr05|s
of epithelial cells.
: A2: Tubular lumina.
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. Q1: What is there involving
. predominantly proximal

. convoluted tubule diffusely?

* Q2: What contains casts and the +
regenerating flat epithelium lines *
. the necrosed tubule? -
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Research and Development

* Real-world Validation: instead of controlled environments.

* Explainability Metrics: standardized metrics to evaluate XAl.

 Human-Al Collaboration: how Al can augment human
decision-making in healthcare, rather than replace it.

* Ethical Al: creating Al models that are not just accurate but
also ethical, unbiased, and just.

* Interdisciplinary Research: collaboration between

healthcare professionals and Al researchers.
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Policy Considerations

* Regulatory Frameworks: developing robust regulatory
frameworks that can adapt to Al.

* Data Privacy: policies that protect patient data and ensure

that it is used responsibly.
* Transparency Standards: policies that disclose how the Al

models work.
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